Advanced Abstract Algebra

Paper Code: 
MAT 121
Contact Hours: 
Max. Marks: 
Unit I: 

Direct product of groups (External and Internal). Isomorphism theorems - Diamond isomorphism theorem, Butterfly Lemma, Conjugate classes, Sylows theorm, p- sylow theorem .


Unit II: 

Commutators, Derived subgroups, Normal series and Solvable groups, Composition series, Refinement theorem and Jordan-Holder theorem for infinite groups.

Unit III: 

Polynomial rings, Euclidean rings. Modules, Submodules, Quotient modules Direct sums and Module Homomorphisms. Generation of modules, Cyclic modules.

Unit IV: 

Field theory - Extension fields, Algebraic and Transcendental extensions, Separable and inseparable extensions, Normal extensions. Splitting fields.

Unit V: 

Galois theory - the elements of Galois theory, Fundamental theorem of Galois     theory , Solvalibility by radicals.    

Essential Readings: 
  1. Chauhan & Singh, Advanced Abstract Algebra, JPH, Jaipur.
  2.   P.B.Bhattacharya, S.K.Jain and S.R.Nagpaul,Basic Abstract Algebra , Cambridge     University Press.
  3.   I.N.Herstein , Topics in Algebra , Wiley Eastern Ltd., New Delhi

4.   J.B.Fraleigh: Abstract Algebra, Narosa Pvt. Ltd.

  1. Deepak Chatterjee,Abstract Algebra.PHI. Ltd.New Delhi.
  2. Malcolm Birkoff ,Abstract Algebra , Cambridge University Press