Mathematics
Published on Mathematics (https://maths.iisuniv.ac.in)

Home > Advanced Abstract Algebra

Advanced Abstract Algebra [1]

Paper Code: 
MAT121
Credits: 
5
Contact Hours: 
75.00
Max. Marks: 
100.00

Direct product of groups (External and Internal). Isomorphism theorems - Diamond isomorphism theorem, Butterfly Lemma, Conjugate classes, Sylows theorm, p- sylow theorem .

 

Commutators, Derived subgroups, Normal series and Solvable groups, Composition series, Refinement theorem and Jordan-Holder theorem for infinite groups.

 

Polynomial rings, Euclidean rings. Modules, Submodules, Quotient modules Direct sums and Module Homomorphisms. Generation of modules, Cyclic modules.

 

Field theory - Extension fields, Algebraic and Transcendental extensions, Separable and inseparable extensions, Normal extensions. Splitting fields.

 

Galois theory - the elements of Galois theory, Fundamental theorem of Galois     theory , Solvalibility by radicals.    

 

Essential Readings: 
  1. Chauhan & Singh, Advanced Abstract Algebra, JPH, Jaipur.
  2. P.B.Bhattacharya, S.K.Jain and S.R.Nagpaul,Basic Abstract Algebra , Cambridge     University Press.
  3. I.N.Herstein , Topics in Algebra , Wiley Eastern Ltd., New Delhi
  4. J.B.Fraleigh, Abstract Algebra, Narosa Pvt. Ltd.

 

References: 

  1. Deepak Chatterjee,Abstract Algebra.PHI. Ltd.New Delhi

  2.    Malcolm Birkoff ,Abstract Algebra , Cambridge University Press.

  3 . John B. Fraleigh [2], First Course in Abstract Algebra, A: Pearson New International Edition [3] 2013

 

Academic Year: 
2016-2017 [4]

Footer Menu

  • Univ Home
  • Home
  • Contact Us
  • About Us
  • Site Map
  • Feedback
  • Site Login

Follow Mathematics on:

Facebook Twitter YouTube

IIS (Deemed to be University)

Gurukul Marg, SFS, Mansarovar, Jaipur 302020, (Raj.) India Phone:- +91-141-2400160-61, 2397906-07, Fax: 2395494, 2781158


Source URL: https://maths.iisuniv.ac.in/courses/subjects/advanced-abstract-algebra

Links:
[1] https://maths.iisuniv.ac.in/courses/subjects/advanced-abstract-algebra
[2] http://www.pearsoned.co.uk/bookshop/Results.asp?iCurPage=1&Type=1&Author=John+B%2E+Fraleigh&Download=1&SearchTerm=John+B%2E+Fraleigh
[3] http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000553696
[4] https://maths.iisuniv.ac.in/academic-year/2016-2017