ANALYSIS-I

Paper Code: 
MAT301
Credits: 
3
Contact Hours: 
45.00
Max. Marks: 
100.00
9.00

Real number system as a complete ordered field, Open and closed sets, Limit point of sets, Bolzano Weirstrass theorem, Concept of compactness, Heine Borel theorem.

9.00

Real sequences, Limit and convergence of a sequence, Monotonic sequences, Cauchy’s sequences, Sub sequences and Cauchy’s general principle of convergence.

9.00

Properties of continuous functions on closed interval, Derivable functions: Derivative of composite function, Inverse function theorem, Limit and continuity of a function of two variables, Rolle’s and Darboux theorem.

9.00

Riemann Integration, Lower and upper Riemann integrals, Properties of Riemann integration, Mean value theorem of integral calculus, Fundamental theorem of integral calculus.

9.00

Improper integrals: Kinds of improper integral, Tests of convergence of improper integrals and related problems.

Essential Readings: 
  1. Shanti Narayan, A course of Mathematical Analysis, S. Chand and Co., New Delhi, 1995.
  2. T.M. Apostol, Mathematical Analysis, Norosa Publishing House, New Delhi, 2000.
  3. K. C. Sarangi, Real Analysis and Metric Spaces, Ramesh Book Depot, Jaipur, 2006.
  4. Robert G. Bartle, Donald R. Sherbert, Introduction to Real Analysis, John Wiley & Sons Canada, 2011.
References: 
  1. P.K. Jain and S.K. Kaushik, An Introduction to Real Analysis, S. Chand and Co., New Delhi, 2000.
  2.  S. Lang, Undergraduate Analysis, Springer-Verlag, 1997.
  3.  R. R. Goldberg, Real Analysis, Oxford and IBH Publishing Company, New Delhi, 1999.
  4. Charles Chapman Pugh, Real Mathematical Analysis, Springer, 2004.
  5.  Stephen Abbott, Understanding Analysis, Springer, 2010.
Academic Year: