COMPLEX ANALYSIS

Paper Code: 
MAT601
Credits: 
3
Contact Hours: 
45.00
Max. Marks: 
100.00
Unit I: 
I
9.00
Complex Plane, connected and compact sets. Extended complex plane: Stereographic projection. Complex valued functions, Analytic functions, C-R equation, Harmonic functions. Construction of an analytic functions.
 
Unit II: 
II
9.00
Complex Integration, Complex line Integrals, Cauchy’s integral theorem, Cauchy’s Fundamental theorem, Indefinite integrals, fundamental theorem of Integral Calculus for complex functions. 
 
Unit III: 
III
9.00
Cauchy’s Integral Formula, Analyticity of the derivative of an analytic function, Liouville’s theorem, Poisson’s Integral formula, Morera’s theorem, Maximum modulus principle. Taylor’s and Laurent’s Series.
 
Unit IV: 
IV
9.00
Singularities. Meromorphic functions and Entire functions. Riemann’s theorem, Casorati-Weirstrass theorem. Rouche’s theorem. Fundamental theorem of algebra. Cauchy’s Residue theorem.
 
Unit V: 
V
9.00
Contour integration. Conformal mapping (Introduction).Bilinear transformation and their simple properties . Power series.
 
Essential Readings: 
  1. Complex Analysis , Purohit and Goyal , Jaipur Publishing House
  2. Complex Variables: Theory and Applications ,H.S.Kasana, Prentice Hall, Delhi
  3. Introduction to Complex Analysis, S.Ponnuswamy, Narosa Publishers.
  4. Complex Variables and Application, Brown and Churchill, McGraw Hills Book Co.
References: 
  1. Theory and Problems of Complex Variables, R.Murray Spiegel , Schaum Outline Series
  2. A.R. Vashistha: Goyal publications.
 
Academic Year: