COMPLEX ANALYSIS (Optional Paper)

Paper Code: 
MAT327
Credits: 
5
Contact Hours: 
75.00
Max. Marks: 
100.00
Unit I: 
I
15.00
Functions of a complex Variable, Differentiability and analyticity, Cauchy Riemann Equations, Harmonic functions, Existence of Harmonic conjugate, transcendental functions such as exponential, trigonometric and hyperbolic functions.                                                                             
 
Unit II: 
II
15.00
Power series as an analytic function. Properties of line integrals, Goursat Theorem, Cauchy theorem, Consequence of simply connectivity, Index of a closed curve, Cauchy’s integral formula. 
 
Unit III: 
III
15.00
Morera’s theorem, Liouville’s theorem, Fundamental theorem of Algebra, Taylor’s theorem, Laurent series, singularities, Classification of singularities, Zeros of Analytic functions.      
 
Unit IV: 
IV
15.00

Maximum modulus theorem, Minimum modulus theorem, Hadamard three circle theorem, Schwarz’s Lemma, Rouche’s theorem, Calculation of residues, Residue theorem.              

Unit V: 
V
15.00
Evaluation of integrals of the form ∫_α^(2π+α)▒〖R(cos θ,sinθ)dθ〗, ∫_(-∞)^∞▒〖f(x)dx〗, Conformal mappings and Mobius transformations. 
 
Essential Readings: 
  1. Complex Analysis (Third edition) by L. V. Ahlfors, McGraw Hill Book Company, 1979. 
  2. Complex Analysis by J. B. Conway, Narosa Publishing House.
  3. Complex Analysis by Serg Lang, Addison Wesley. 
  4. Foundations of Complex analysis (Second Edition), S. Ponnusamy, Narosa Publishing House. 
  5. Complex variables and Applications by Ruel V. Churchill.
 
Academic Year: