Functional Analysis- II (Compulsory Paper)

Paper Code: 
MAT 421
Credits: 
5
Contact Hours: 
75.00
Max. Marks: 
100.00
Unit I: 
I
15.00

Adjoint of an operator on a Hilbert space. Self-adjoint, Positive, Normal and Unitary operators and their properties.Projection on a Hilbert space. 

Unit II: 
II
15.00

Invariance. Reducibility. Orthogonal projections. Derivatives of a continuous map from an open subset of Banach space to a Banach space. 

Unit III: 
III
15.00

Rules of derivation. Derivative of a composite, Directional derivative. Mean value theorem and its applications. Partial derivatives and Jacobian Matrix. 

Unit IV: 
IV
15.00

Continuously differentiable maps. Higher derivatives. Taylor’s formula. Inverse function theorem. Implicit function theorem. Step function, Regulated function.

Unit V: 
V
15.00
Primitives and integrals. Differentiation under the integral sign. Riemann integral of function of real variable with values in normed linear space. 
 
Essential Readings: 
1. G.F.Simmons: Topology and Modern Analysis, McGraw Hill (1963) 
2. G.Bachman and Narici : Functional Analysis, Academic Press 1964 
3. A.E.Taylor : Introduction to Functional analysis, John Wiley and sons (1958) 
4. A.L.Brown and Page : Elements of Functional Analysis, Van-Nastrand                  Reinehold Com 
5. B.V. Limaye: Functional Analysis, New age international. 
6. Erwin Kreyszig, Introductory functional analysis with application, Willey.
 
Academic Year: